Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Droughts over the last century in Southwestern North America (SWNA) have had severe consequences for people and ecosystems across the region, most recently during the early 21st‐century megadrought (2000–2022). The 20thcentury, however, was bracketed by two extended pluvials that also had significant impacts in the region. We use a 1,224 years (800–2023 CE) record of observed and reconstructed soil moisture, in concert with a paleoclimate reanalysis product, to place the 20th‐century pluvials in a longer‐term context and investigate the occurrence and dynamics of similar events in the Common Era. Analyses of the soil moisture reconstruction demonstrate that pluvials and megapluvials are as ubiquitous as droughts and megadroughts over the last millennium. The early (19 years; 1905–1923) and late (22 years; 1978–1999) 20th‐century pluvials rank as the second and first wettest in the record, respectively, positioning these as events on par with the most extreme megadroughts. Pluvials show a strong association with tropical Pacific (warm) sea surface temperatures (SSTs) during the 20thcentury and over the prior millennium, though the role of the tropical Atlantic is much more uncertain and ambiguous. Using a Bayesian hierarchical modeling approach trained on the pre‐industrial period (800–1849 CE), we find that the record setting late 20th‐century megapluvial likely occurred as a consequence of anomalously strong Pacific sea surface temperature forcing. This work establishes pluvial and megapluvial events as intrinsic components of Common Era hydroclimate variability in SWNA, comparable in importance to droughts and megadroughts.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract Anthropogenic climate change has already affected drought severity and risk across many regions, and climate models project additional increases in drought risk with future warming. Historically, droughts are typically caused by periods of below‐normal precipitation and terminated by average or above‐normal precipitation. In many regions, however, soil moisture is projected to decrease primarily through warming‐driven increases in evaporative demand, potentially affecting the ability of negative precipitation anomalies to cause drought and positive precipitation anomalies to terminate drought. Here, we use climate model simulations from Phase Six of the Coupled Model Intercomparison Project (CMIP6) to investigate how different levels of warming (1, 2, and 3°C) affect the influence of precipitation on soil moisture drought in the Mediterranean and Western North America regions. We demonstrate that the same monthly precipitation deficits (25th percentile relative to a preindustrial baseline) at a global warming level of 2°C increase the probability of both surface and rootzone soil moisture drought by 29% in the Mediterranean and 32% and 6% in Western North America compared to the preindustrial baseline. Furthermore, the probability of a dry (25th percentile relative to a preindustrial baseline) surface soil moisture month given a high (75th percentile relative to a preindustrial baseline) precipitation month is 6 (Mediterranean) and 3 (Western North America) times more likely in a 2°C world compared to the preindustrial baseline. For these regions, warming will likely increase the risk of soil moisture drought during low precipitation periods while simultaneously reducing the efficacy of high precipitation periods to terminate droughts.more » « less
- 
            Abstract With continued fossil‐fuel dependence, anthropogenic aerosols over South Asia are projected to increase until the mid‐21st century along with greenhouse gases (GHGs). Using the Community Earth System Model (CESM1) Large Ensemble, we quantify the influence of aerosols and GHGs on South Asian seasonal precipitation patterns over the 21st century under a very high‐emissions (RCP 8.5) trajectory. We find that increasing local aerosol concentrations could continue to suppress precipitation over South Asia in the near‐term, delaying the emergence of precipitation increases in response to GHGs by several decades in the monsoon season and a decade in the post‐monsoon season. Emergence of this wetting signal is expected in both seasons by the mid‐21st century. Our results demonstrate that the trajectory of local aerosols together with GHGs will shape near‐future precipitation patterns over South Asia. Therefore, constraining precipitation response to different trajectories of both forcers is critical for informing near‐term adaptation efforts.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
