skip to main content


Search for: All records

Creators/Authors contains: "Marvel, Kate"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Anthropogenic aerosol emissions are expected to change rapidly over the coming decades, driving strong, spatially complex trends in temperature, hydroclimate, and extreme events both near and far from emission sources. Under-resourced, highly populated regions often bear the brunt of aerosols’ climate and air quality effects, amplifying risk through heightened exposure and vulnerability. However, many policy-facing evaluations of near-term climate risk, including those in the latest Intergovernmental Panel on Climate Change assessment report, underrepresent aerosols’ complex and regionally diverse climate effects, reducing them to a globally averaged offset to greenhouse gas warming. We argue that this constitutes a major missing element in society’s ability to prepare for future climate change. We outline a pathway towards progress and call for greater interaction between the aerosol research, impact modeling, scenario development, and risk assessment communities.

     
    more » « less
  2. Abstract

    With continued fossil‐fuel dependence, anthropogenic aerosols over South Asia are projected to increase until the mid‐21st century along with greenhouse gases (GHGs). Using the Community Earth System Model (CESM1) Large Ensemble, we quantify the influence of aerosols and GHGs on South Asian seasonal precipitation patterns over the 21st century under a very high‐emissions (RCP 8.5) trajectory. We find that increasing local aerosol concentrations could continue to suppress precipitation over South Asia in the near‐term, delaying the emergence of precipitation increases in response to GHGs by several decades in the monsoon season and a decade in the post‐monsoon season. Emergence of this wetting signal is expected in both seasons by the mid‐21st century. Our results demonstrate that the trajectory of local aerosols together with GHGs will shape near‐future precipitation patterns over South Asia. Therefore, constraining precipitation response to different trajectories of both forcers is critical for informing near‐term adaptation efforts.

     
    more » « less
  3. Abstract

    Future changes to the hydrological cycle are projected in a warming world, and any shifts in drought risk may prove extremely consequential for natural and human systems. In addition to long‐term moistening, drying, or warming trends, perturbations to the annual cycle of regional hydroclimate variables may also have substantial impacts. We analyze projected changes in several hydroclimate variables across the continental United States, along with shifts in the amplitude and phase of their annual cycles. We find that even in regions where no robust change in the annual mean is expected, coherent changes to the annual cycle are projected. In particular, we identify robust regional phase shifts toward earlier arrival of peak evaporation in the northern regions, and peak runoff and total soil moisture in the western regions. Changes in the amplitude of the annual cycle of total and surface soil moisture are also projected, and reflect changes to the annual cycle in surface water supply and demand. Whether changes become detectable above the background noise of internal variability depends strongly on the future scenario considered, and significant changes to the annual cycle are largely avoided in the lowest‐forcing scenario.

     
    more » « less